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Epicycles were historically used by the ancient Greeks to
explain the retrograde motion of planets. This episode in
history of science is used as a case to show how we can use
computer simulations to visualize complex, abstract ideas
and difficult to imagine constructions. We present here a
method developed using the dynamic mathematics software
GeoGebra, to teach the concept of epicycles.
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INTRODUCTION

When students face complex and abstract ideas which need a
lot of imagination, they find it difficult to visualize and concretize
the ideas. For visualizing and understanding these abstract ideas
some concrete ideas are needed. Concrete models here, would
mean some physical objects or computer simulations which will
try to render the nature of the phenomena or concept under
question as closely as possible (Hesse, 1966). The physical
objects or the computer simulations in this case would fall in the
category of ‘external’ visualizations. External visualizations
provide support for all perception, including that in science
(Gilbert, 2005). While building actual physical models is desirable
in many cases, it may not be always possible to actualize in
practice. Instantiating all possible values of the model are
difficult, often impossible. However it is important to work out
the possible implications of the model to gain proper
understanding of the model. In such cases computer simulations
clearly win over the physical models. The computer simulations
offer the flexibility and ease to change the parameters of the
model, which is not always possible in the physical models.
Due to this very fact students can be left to explore a particular
simulation and this can possibly lead to the construction of
knowledge by students themselves. We present here one such
case and how using a computer could help gain understanding
and construction of the required domain knowledge. We have
prepared a generic model using the dynamic mathematics
software GeoGebra for explaining the motion of the celestial
bodies using the idea of epicycles and its variants in the context
of elementary astronomy. This example also underlines the use
of computer for scientific imagination, in the current case that of
ancient Greek astronomers.

The present work was implemented in an undergraduate
history of science course, which is taught by one of the
authors. The course uses an approach to teach the ideas that
the ancient scientists used to develop the subject matter. We
used a computer simulation to explain how the Greeks attempted
to solve the problem of retrograde motion of planets. This
exercise helped the students realize and appreciate the rigorous
mathematical calculations performed by the ancients and also
the possible implications of using such a model.

To teach the concepts in elementary astronomy in this course
we used two Free and Open Source Softwares (FOSS),
GeoGebra1 and Stellarium2. Stellarium is a planetarium software
which was used to show the movements of the celestial bodies
across the sky. For presenting the geocentric world view we
used the dynamic mathematics software GeoGebra. In what
follows we briefly present an account of the ancient Greek’s
scheme of the heavens, and their construction using GeoGebra
and its possible implications.

For this course we have mostly followed (Hogben, 1938;
Hoskin, 2003; Rogers, 1960; Toulmin & Goodfield, 1961) in
presenting and developing the ideas regarding astronomy of
the ancient times.

EPICYCLES AND ECCENTRICS

The Alexandrian school of astronomy, begins from about 330
B.C. and continued for a few centuries. There are many
remarkable discoveries in astronomy attributed to this school.
For our purpose we will consider the schemes produced by
them to explain the motion of the planets. The scheme of the
Alexandrian school peaked with Ptolemy’s model, which lasted
till the time of Copernicus in 15th century. The idea that the
Earth is stationary was firmly established in the later period,
but the model with so many spheres was complicated. They
instead thought about an idea that would simplify the
complexity of system. The uneven motion of the Sun, faster in
the winter and slower in the summer, can be predicted by just
using one eccentric circle as shown in Figure 1. The Sun is
moving on a circle, which rotates at a constant speed, the
Earth is not at the centre of the circle, but is off-centre. A
similar scheme was devised for the moon.
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For explaining the motion of the planets each of the planet was
made to steadily go around the centre once in its own “year”,
and the center of the planets’ orbit was made to revolve around
the Earth once in 365 days (Rogers, 1960). Thus the planet has
a superimposition of two circular motions, producing observed
epicycloid track. The eccentric scheme for the planets is shown
in Figure 1.

Figure 1: The idea of an Figure 2: The idea of an
eccentric circle for one epicyclic model for a planet
planet and the Sun

These schemes though are operational with circles, a more
grand description would be in terms of spheres. For many
centuries the astronomers indeed thought in terms of “motions
of the heavenly spheres” (Rogers, 1960).

Epicyclical model as shown in Figure 2 equivalent model to
explain the same effect. Hipparchus (~140 B.C.) showed the
equivalence of the eccentric and the epicyclical schemes to
represent the heavenly motion. In this case there is a main
circle whose radius arm is rotating at a constant rate. This is
the deferent circle. The end of this arm carries a smaller circle
the epicycle. The track thus produced by a point on the smaller
circle is called epicycloid, when both are moving at constant
speeds. The word epicycle literally means outer-circle. This
curve can be produced mechanically by rolling a smaller circle
on the circumference of the larger one. The mathematical details
and the parametric equations of the curves generated in this
way, are provided in chapter 6 of (Lawrence, 1976).

After Hipparchus the final model that we present is that of
Ptolemy (~120 A.D.). In Ptolemy’s model the Earth is stationary,
non-rotating at the center. The sphere of the stars is rotating
once every 24 hours. The Sun has a simple epicyclic scheme
as given by Hipparchus. The Moon has a bit more complex
epicycle. For the other remaining five planets Ptolemy found
that there were discrepancies, with simple epicyclical models.
The theory and the data did not fit. Ptolemy came up with a
scheme which could “save the phenomena”. In his scheme,
shown in Figure 3, the Earth is not at the centre of the larger
circle, as is in the case of epicyclical model. It is placed at some
distance from the centre of the main circle. There is another
point called as equant, which is at the same distance from the
centre as the Earth. The equant is the centre for the epicycle of
the planet.

Ptolemy’s scheme was remarkably successful in explaining the
observed motion of the planets. By adjusting the speeds and
the lengths of the orbits, one can get the desired results. But
the discrepancies mounted with this scheme also. This scheme
was set to rule the models for the next thousand years.

BUILDING THE GREEK COSMOLOGICAL MODELS

The physical model for depicting the epicyclical movements
can be made with the arrangement given in Roger’s book (1960).
The problem with such a physical model is if we want to change
the length of the deferent or the radius of the epicycle, it is not
easy to do so. Another problem would be actually tracing the
actual orbit produced by the planet. These things can be done,
but it will take more efforts to do so. In this case we preferred the
computer simulation of the model using GeoGebra.

Figure 3: Ptolemy’s scheme Figure 4: A screen shot to
to explain the motion show the phenomena of
of planets being able to watch the

same face of moon. The
radius of the epicycle and
length of the deferent are the
same. Here a = 1, h = 1,
Radius = 4, Deferent = 10

To build the cosmological models of the ancients we used the
already existing tools in GeoGebra. In the sections that follow
the radius of the deferent circle is denoted by Deferent and
radius of the epicycle as Epicycle. In the model we also have
options for changing these radii using the Slider function in
GeoGebra. In the sliders we have an option to Animate. When
this option is selected the variable in the slider, changes its
values automatically, with a given step size, from minimum to
maximum values. The rate at which the slider changes its values
can also be changed. In our model of the epicycles we need to
change the rate of the angular speeds for the deferent and the
epicycle quite often, so we have provided, sliders for them
too. For changing the speed of the point on the main circle we
use the slider named a, and for the epicycle slider named h.
Finally we can enable the option of Trace On on any of the
points in the construction. We have put it On for the planet on
the epicycle. The Trace On option generates the trajectories in
red color which we have shown in the screen shots. In the next
section on exploring the models, the values of the four
parameters which generated, the screen shots will be given.
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animation one can clearly see that the same face is directed
towards the Earth.

The ellipse

Using the same setting for radius and the length of the deferent,
but changing one of the speeds to -1 instead of 1, we get the
resultant orbit of an ellipse, Figure 5. We can vary the shape of
the ellipse by changing either the radius of epicycle or the
length of the deferent. Figures 2, 3 and 9 in Hanson’s article
(1960) have elliptical orbits. When the radius is taken to lower
limit of zero, the resulting motion is circular with radius being
equal to that of the deferent. If we make the radius of the
epicycle larger than the length of the deferent, the resultant
orbit is an ellipse. But the intermediate case when both of them
are equal presents an interesting orbit. If we keep the length of
the radius of epicycle equal to that of the deferent, resulting
motion is a perfect rectilinear motion, the screen shot is shown
in Figure 6. This appears as Figure 5 in Hanson’s article
(Hanson, 1960, p. 153). In this case the angular speed for the
two was kept at 1 and -1.

The triangle

By changing the radius of the epicycle to a smaller value than
the length of the deferent, and keeping the speeds of the two
to 1 and -3 one can approximate a triangular orbit. The triangular
orbits appear as Figure 6 and 7 of in Hanson’s paper (1960).

The square

Just a little change in the settings gives us a square, Figure 8.
If we change h to -3, the resultant orbit that we get is that of a
square. The square orbit appears in Figure 8 of Hanson’s paper
(1960).

Non-integer speeds

Experimenting with the speeds and the lengths in the model
generates very beautiful patterns. If we keep one of the speeds
as a non-integer, we generate beautiful spirographs. For
example in case of Figure 5, if we change a = 1.1 instead of 1,
we generate the following beautiful spirograph Figure 9. The
planet comes back to its starting point, since the orbits resulting
from such a scheme are closed. Depending on the angular
speed of this may happen in one revolution as in Figure 5 or it
can take many cycles as in Figure 9.

GeoGebra offers an inbuilt tool which enables one to see how
a particular file was constructed. In the View option on the
main Menu-bar in the GeoGebra window, there is an Option of
Construction Protocol, which lists the order in which the
objects were created. Also just below this option is the option
for Navigation Bar for Construction Steps, which shows a
screen video for the construction steps. The GeoGebra files
for the different models are available at: http://
hos.gnowledge.org/geogebra.

EXPLORING THE MODELS

We would like to mention that in 1960 Norwood Hanson wrote
a paper on epicyclical astronomy, from which we borrow our
title, states that “When confronted with this triangular “orbit”
and the square one which follows, several historians and
philosophers of my acquaintance have registered startled,
incredulous reactions” (Hanson, 1960). We couldn’t agree
more. We were not aware of the work of Hanson when the
models were prepare in GeoGebra. But we did register the
“startled, incredulous reactions” indeed. Also when these
models were presented to different groups of students and
academics they also were “startled”.

In our construction of the epicycles all the 12 figures which
appear in Hanson’s paper can be produced, with proper
adjustments of speeds and the radii of the orbits. Apart from
these, there is almost an infinite number of figures which can
be produced using the constructed model. In this article we
show some screen-shots for the same.

The static screen shots which appear in this article do no
justice to the dynamic movement of the planets as seen in
GeoGebra. We present some of the most startling ones.

The circle, and the face of the moon

If we keep the radius of the epicycle smaller than the length of
the equant and keep the speeds of the two same then we see a
simulation of a natural phenomena concerning the moon. The
period of revolution of moon and its period of rotation around
the earth is same. This is the reason why we see the same face
of moon. With these settings we see that the same face of the
epicycle, even when it is rotating about its own axis and
revolving around the Earth. The Planet revolves around the
Earth in a circular orbit. The screen shot of Figure 4 shows
when the planet moves in such an orbit, in the resultant
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Figure 9: A modified version of Figure
5. The radius of the epicycle and
length of the deferent are the same.
Here a = 1, h = 1, Epicycle = 4,
Deferent = 10

Figure 10: Explaining the
retrograde motion of planets. Here
a = 1, h = 13, Epicycle = 1.4,
Deferent = 10

Figure 7: A ‘triangular’ orbit. The
radius of the epicycle and length
of the deferent are the same.
Here a = 1, h = -2, Epicycle = 2,
Deferent = 10

Figure 8: A ‘square’ orbit. The
radius of the epicycle and length
of the deferent are the same. Here
a = 1, h = -3, Epicycle = 1.5,
Deferent = 10

Figure 5: The resultant orbit of an ellipse. The
settings are a = 1, h = -1, Epicycle = 4, Deferent = 10

Figure 6: A ‘rectilinear’ orbit. The radius of the epicycle and
length of the deferent are the same. Here a = 1, h = –1,
Epicycle = 4, Deferent = 4
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EXPLAINING THE RETROGRADE MOTION

The epicycles and the eccentrics were introduced to explain
the retrograde motion of the planets. We now present some of
the screen-shots for explaining the retrograde motion of the
planets. Figure 10 shows the motion of a planet, which can be
seen as a retrograde motion by an observer on Earth.

The perspective of the entire system which our model offers is
one in which the observer is very far away from the system,
and is seeing from the ‘top’. For an observer on Earth only the
projection of the epicycloidal path will be visible, which explains
the retrograde motion.

SOME IMPLICATIONS

The idea of a body performing a circular motion at an uniform
speed is common in elementary physics. When two such
uniform circular motions are combined one gets some counter-
intuitive results. Even then, expecting curves like the ellipse
and the epicycloid from the combination of two uniform circular
motion, is intuitive. What is further intriguing and counter-
intuitive in case of epicycles is that apart from the figures
which are of the curved type like the ellipse, epicycloids, some
regular polygons like the triangle and the square are also
generated in the process. We think this is a very important
result. Apart from the elementary astronomy course where we
used this model, it can also form good material in an advanced
mechanics course.

FURTHER

One of the constraints of using the current version of GeoGebra
[we have used version 3.2.0.0 for developing the epicycles] is
that it is 2-D. Although the work for 3-D version is under
progress. Once the 3-D version is available we can probably
work out the details of having the planet move on a cube,
pyramid or an ovoid as mentioned by Hanson in his paper
(1960). In the 3-D version the actual observed paths of the
planets as seen in the night sky can be replicated.

CONCLUSION

The exploration of theoretical models using dynamic software
like GeoGebra help in visualizing highly abstract and difficult

to imagine constructions. This kind of use of software tools
for education has been widely researched and developed by
constructionist studio based education.

In my vision, the child programmes the computer and, in
doing so, both acquires a sense of mastery over a piece of
most modern and powerful technology and establishes an
intimate contact with some of the deepest ideas from sci-
ence, mathematics, and from the art of intellectual model
building (Papert, 1980, p. 5, emphasis in original).

We presented an elaborate case from history of science to
demonstrate the efficacy of dynamic visualization software.
Such software, unlike computer based tutorials, help the
learners construct and explore the domain on their own to
achieve greater understanding of difficult subjects.

NOTES

1 http://www.geogebra.org
2 http://www.stellarium.org
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