
GNOWSYS: A System for Semantic Computing

Nagarjuna G.

Homi Bhabha Centre for Science Education,
Tata Institute of Fundamental Research,

Mumbai India 400088,
nagarjun@gnowledge.org,
http://web.gnowledge.org

Abstract. The purpose of this essay is to introduce a heterogeneous
computing environment with a possibility of semantic and formal anno-
tations, covering the motivation, architecture, and functionality of the
system called GNOWSYS (Gnowledge Networking and Organizing Sys-
tem). GNOWSYS is a system to specify, publish and query about multi-
ple logics, ontologies, and epistemologies. Its kernel includes three seman-
tic layers with increasing order of semantic specification, three groups
of component classes for storing objects of various complexity in the
knowledge base, and three levels of generality with objects belonging to
tokens, types and metatypes. It has component classes for representing
both declarative and procedural knowledge, and the latter specification
is executable enabling semantic and visual computing. It is specially
made for publishing vocabularies, propositions, ontologies, complex sys-
tems, web services, with or without formal annotation. Its architecture
is not frozen, and is still actively taking shape. Hence a purpose of this
communication is also a request for comments.

1 Introduction and Motivation

This essay is not about suggesting any specific original solutions to formal knowl-
edge representation problems. The attempt is to draw from the current wisdom
of logics and knowledge representation, to build a comprehensive, flexible, and
extendable conceptual schemes of KR and develop a server that stores, modi-
fies, and distributes across the Internet such schemes. Its main objective is to
publish any knowledge representation scheme with or without constraints in an
object oriented distributed database. It may be useful to inform the readers that
the author (yours truly) of this essay, and the application GNOWSYS, is not a
qualified computer scientist, but an epistemologist venturing to develop a com-
puting solution to solve the problem of modeling conceptual dynamics in the
context of learning and discovery. Also this paper does not serve the purpose
of demonstrating that the current proposal is the better or distinctive or more
functional solution to the problem of knowledge representation than the other
methodologies. Such a task will be met at a later day. It is therefore thought
that at least the motivation, dubbed as the rationale, for developing GNOWSYS



1. INTRODUCTION AND MOTIVATION

be made explicit at the outset. It is less than a concept paper, since the formal
properties of the system are not specified rigorously in this composition.

The initial motivation for making GNOWSYS was to develop a community
portal (gnowledge.org) that meets the following three objectives: (a) to draw
concept graphs and inferences from a knowledge base; (b) the system represents
the conceptual scheme of an expert’s knowledge in a given area, and reports
the matches and mismatches of a learner’s conceptual schemes in the process of
acquiring knowledge; (c) each node in the expert’s conceptual scheme refers to
one or more learnable resources like lessons, images, videos, figures, and other
such digitally encoded and accessible resources available on the Internet. An
obvious application of such a tool is a sophisticated knowledge base for elearning.
It may be noted that objectives (a) and (c) are several times easier than the
objective (b), since the problem is not merely about static representation of
knowledge of an expert and a novice, but to model the dynamics of conceptual
change in the process of learning and discovery, which are known to be complex.
To fulfil the objective (b) it is required to have a framework to store expert’s
knowledge.

Some aspects of the problems were realized in the early days of AI by Her-
bert Simon in his often cited work Sciences of the Artificial[1]. Simon’s pioneering
contributions to the theory and applications of AI, and Marvin Minsky’s idea
of frames[2], continue to play a pivotal role in solving the knowledge representa-
tion problems even today. This work grows out of and draws from their wisdom.
Recently, several researchers used concept maps and semantic networks to en-
hance conceptual learning[3–6] in the context of education. Most of these tools,
suggested in the above citations, are essentially drawing tools, and the maps
drawn by the students or experts could not be stored in an accessible knowledge
base. Graphs were stored as separate files, making reusing a component of a
graph difficult. Since the graphs were encoded in a format that is internal to the
applications, it is difficult to compare two concept graphs, made by different ap-
plications, and remain unshareable. The objective of matching and mismatching
of concept graphs of two or more agents could not be achieved without a sharable
encoding. While designing GNOWSYS these problems were kept in mind, so the
graphs generated by other applications could be shared and published by the
system.

The epistemological presuppositions (the working hypotheses) of this under-
taking are: (1) a cognitive agent understands a new concept when relations are
established between the preexisting concepts with the new concept[7, 8, 3]; (2) to
educate a person therefore is to facilitate the process of establishing the relevant
relations between concepts so as to match that of an expert; (3) learning there-
fore involves restructuring of conceptual schemes; and (4) misunderstandings are
due to mismatching between conceptual schemes between the agents. According
to this approach no concept gains any meaning independent of its relations with
other concepts. Thus, meaning of a concept is the network it forms with others.

The sense of understanding used here is stronger since we are seeking that the
relations between the concepts be made explicit. For example, when we look at

2



1. INTRODUCTION AND MOTIVATION

a tree, and recognize that it is indeed a tree, is also understanding of a sort, but
it is implicit. Also the term ‘education’ is used here in a strong sense. This does
not cover the various forms of behavioral mastery, such as skills, that children
learn and execute without any explicit understanding. One of the challenges in
education, particularly of exact sciences, is to gradually train learners towards
more and more explicit forms of representation. Formal sciences like theoreti-
cal physics, mathematics and logic, for example, are domains of discourse where
procedural knowledge is declaratively stated and declarative knowledge is proce-
durally stated reaching a highest degree of explicit knowledge representation[9].
If a system could model the process of learning science beginning from folk-lore
to formal knowledge, the system is required to capture implicitly several enti-
ties in the knowledge base with entities loosely and sometimes inconsistently
held with other entities, and with several degrees of modalities of expressing a
proposition.

Thomas Kuhn’s Structure of Scientific Revolutions[10] had a major impact
on researchers studying cognitive development, and several research programs
are guided by this work for studying conceptual change during ontogeny[11].
Conceptual scheme, by which Kuhn also meant the taxonomy (ontology) of a sci-
entific theory, became a very important mode of analysis for modeling conceptual
change and inter-theoretic semantic relations (see e.g., [12]). These problems are
not new, but recent rise of interest, among the computer science community, in
semantic web[13, 14], brought computational, semantic and logic oriented prob-
lems of ontologies a new life.

The context of learning (cognitive development) and discovery (history of
science), is possibly the most challenging problem for AI, because a learner or a
scientist respectively, in the course of development, not only changes from one
conceptual scheme to another, but also often harbors contradictory systems of
beliefs, often due to implicit and unknown parameters of knowledge. Automated
real cognitive agents are not like the artificial systems that maintain rigid consis-
tency and require for their functionality explicit frameworks. Thus the problem
is to model the transformation from a loosely and often inconsistently struc-
tured and implicit epistemologies and ontologies to tightly integrated, explicitly
consistent forms.

Further, a model developed say for biology may not be appropriate for math-
ematics. A model chosen for representing common sense may not be good for
science, and a model for science may not be good for formal sciences like logic
and mathematics. And the problem becomes even more difficult when we think of
mapping different folk-lore of divergent cultures across the globe. This suggests
that we need a system that could express multiple epistemologies, ontologies and
logics.

Even for exact sciences, it is not an easy task to get together all the pool of
predicates required for even a single domain of knowledge. Added to the prob-
lem is that an ontology made by one school of thought will sure be contested by
another school of thought. Controversies on issues related to epistemology, onto-
logical commitments etc., may make none of the models successful or complete.

3



2. THE ARCHITECTURE

An awareness of this seemingly impossible and utterly difficult task of modeling
the process of learning and using this to build elearning applications by em-
ploying the current wisdom of cognitive and computer science suggests that the
project has all seeds of failure inbuilt at the very core, therefore doomed to fail.

Is there a way out? I think so, and it is the objective of this essay to suggest
a proposal in the form of GNOWSYS. This proposal is not described in a formal
language, essentially because its shape is not final, without a final shape it is
difficult to perform a discourse in a formal language. I thought it is wise to seek
comments from experts at this very stage before freezing the final architecture.
It is likely that the model outlined here for GNOWSYS has inherent, known or
unknown limitations.

A comment here on ACT-R system developed by J.R. Anderson and his
colleagues is appropriate[15]. ACT-R is one striking comprehensive architecture
of cognition with various levels of simulating the process of cognition, problem
solving and a test bed to evaluate theories of cognitive development with a com-
prehensive theory of memory. GNOWSYS system, unlike ACT-R, and is not
based on the current information processing model of cognition. I have argued
elsewhere that semantic memory, as against episodic memory, is not stored in the
body of a cognitive agent, and semantics are a function of inter-agent communi-
cation[9]. Approach of GNOWSYS is to create a collaborative and communicat-
ing knowledge base capable of storing and exchanging propositions, conceptual
schemes, behavioral schemes and belief systems with other agents, both human
and artificial.

The popular Cyc project, and the recently released OpenCyc (a free soft-
ware version of Cyc technology), was built as a huge knowledge base containing
2.5 million facts and rules capturing common sense knowledge[16]. GNOWSYS
supports such knowledge representation with the difference that the knowledge
is stored in a hybrid form (as frames, objects, agents, structures and processes).
GNOWSYS kernel does not contain any inference engine, because GNOWSYS
by design has provision for expressing executable external libraries implemented
in any computer language, thus can support, in principle, any inference imple-
mentation through its procedural objects and RPC interphase, leaving the focus
on building a high performance knowledge base.

The following section is a non-formal description of the architecture of GNOWSYS.
The latter sections explicate how the system can be used for semantic computing
applications.

2 The Architecture

The kernel of GNOWSYS is structured to accommodate different dimensions of
knowledge representation: semantic, complexity, and generality dimensions, in
addition to a communicating interphase. Figure 1 is one way of representing the
architecture.

4



2. THE ARCHITECTURE

2.1 Semantic Dimension

The system is intended to store propositions like, “All gods are present ev-
erywhere.”, “All gods are present somewhere.”, “Some gods are present ev-
erywhere.”, “No gods are present somewhere.”, “Some gods are present some-
where.”, etc. These propositions surely cannot be held together in a single belief
system. But they should be stored and talked about, just as such propositions
exist in this composition. One clear way to achieve the possibility of storing
multiple epistemologies and ontologies of this kind is to build a database system
that has distinct layers in its kernel. It should be possible to have a layer where
ground level propositions exist without ‘interaction’ between them, hence even
contradictory or false propositions can be stored. This layer therefore will not
have semantic constraints. Another layer that takes the propositional ‘atoms’
and combines them with semantic constraints to eliminate contradictions so as
to build a system that is implicitly consistent. But even at this layer, it should
be possible to combine propositions to form a system without checking for con-
sistency. After all we harbor inconsistent belief systems and we need to engage
in a discourse about them. This requires that a second layer of the kernel that
builds the systems contains only constraints of logical connectives (like ‘and’,
‘or’, ‘implies’ etc.) without checking for consistency. The kernel therefore needs
another layer where consistency is imposed.

Based on these requirements, I propose, we build a knowledge base with
component classes that can instantiate objects into three different layers:

Layer 1 of Well Formed Formulae (WFF): A comprehensive, flexible, and
extendable logical core layer to store well formed formulae that are com-
pletely neutral to epistemologies and ontologies.

Layer 2 of Implicitly Structured Systems (ISS): A mechanism to compose
the well formed formulae expressed in the above layers using logical connec-
tives, quantifiers, and modalities, propositional attitudes etc. Consistency is
implicit, but not explicitly imposed by the system.

Layer 3 of Consistently Structured Systems (CSS): Similar to the sec-
ond layer, but with explicitly imposed validity constraints resulting con-
sistent systems. All the consistent systems are defined only in relation to an
explicit set of semantic rules internal to the system.

By composing the elements from Layer 1 while expressing the elements of
Layers 2 and 3, we can represent belief systems with varying degrees of con-
sistency without any conflicting interaction between them, for each system can
be instantiated as independent objects in the knowledge base. Several such sys-
tems with independent semantics can be stored in a single knowledge base or
in a collection of distributed systems over the Internet to form a semantic grid,
to express multiple epistemologies and ontologies. A meta-discourse about the
semantic matching or mismatching between structures can be made possible
by using them as the terms and the predicates from upper ontology (Metatype
level).

5



2. THE ARCHITECTURE

Fig. 1. A diagram representing the architecture of GNOWSYS kernel showing the
component classes, and complexity, and generality dimensions.

2.2 Complexity Dimension

The kernel is designed to provide support to persistently store very simple atoms
of knowledge representation like terms, predicates and very complex proposi-
tional systems like arguments, rules, axiomatic systems, loosely held paragraphs,
and more complex structured and consistent compositions. All the component
classes in GNOWSYS are classified according to complexity into three groups,
where the first two groups are used to express all possible well formed formulae
permissible in a first order logic.

Terms: ‘Object’, ‘Object Type’ for declarative knowledge, ‘Event’, ‘Event Type’,
for temporal objects, and ‘Meta Types’ for expressing upper ontology. The
objects in this group are essentially any thing about which the knowledge
engineer intends to express and store in the knowledge base, i.e., they are the
objects of discourse. The instances of these component classes can be stored
with or without expressing ‘instance of’ or ‘sub-class of’ relations among
them. They are also designed to borrow monadic relations (attributes) from
the predicate group to characterize them.

Predicates: This group consists of ‘Relation’, and ‘Relation Type’ for express-
ing declarative knowledge, and ‘Function’ and ‘Function Type’ for expressing
procedural (behavioral) knowledge. This group is to express qualitative and
quantitative relations among the various instances stored in the knowledge
base. While instantiating the predicates can be characterized by their logi-
cal properties of relations, quantifiers and cardinality as monadic predicates
of these predicate objects. An additional comment of how functions can be
represented in GNOWSYS is warranted. Though it is possible to explicitly
define functions from very primitive ‘atoms’ (as done in ACT-R) GNOWSYS
provides an implicit way of instantiating surrogates of functions available in
the operating system or from the grid of GNOWSYS servers any where on the

6



2. THE ARCHITECTURE

Internet. More on this unique feature later. Another notable point regarding
predicates is that the relations are not only expressed by specifying foreign
keys on the argument objects, but also as independently reified objects.

The object and predicate group together provide the basic vocabulary
and ground assertions. They constitute the set of well formed formulae in
the knowledge base, with quantifiers, and other possible kinds of formal
annotations.

Structures: ‘System’, ‘Encapsulated Class’, ‘Program’, and ‘Process’, are base
classes for complex structures, which can be combined iteratively to pro-
duce more complex systems. The component class ‘System’ is to store in the
knowledge base a set of propositions composed into ontologies, axiomatic
systems, complex systems like say a human body, an artifact like a vehicle
etc., with or without consistency check. An ‘Encapsulated Class’ is to com-
pose declarative and behavioral objects in a flexible way to build classes. A
‘Program’ is not only to store the logic of any complete program or a compo-
nent class, composed from the already available behavioral instances in the
knowledge base with built-in connectives (conditions, and loops), but also
execute them as web services. A ‘Process’ is to structure temporal objects
with sequence, concurrency, synchronous or asynchronous specifications. Us-
ing these classes a wide variety of domain specific systems are specifiable
either formally or informally. These classes can be used to flexibly design
in more than one design architecture, like functional, structural, object or
agent oriented ways. As mentioned earlier these structures are part of the
higher layers, which can reuse the ground assertions as well as other simpler
structures instantiated earlier, but they do not interact with each other un-
less explicitly specified. This is to ensure that inconsistencies in one structure
do not propagate to other structures stored in the knowledge base. This is
how GNOWSYS is intended to store multiple ontologies, epistemologies and
logics.

Every object in the database keeps the neighborhood information, such as its
super-class, sub-class, instance-of, and other relations, in which the object has
a role, in the form of predicates. This feature makes computation of drawing
graphs and inferences, on the one hand, and dependency and navigation paths
on the other hand very easy. Since references about an object are present on
other objects in the network, an accidentally lost object could be reconstructed.
These points justify an element of redundancy in the database. All the data and
metadata is indexed in a central catalogue making query and locating resources
efficient.

2.3 Generality Dimension

Alternatively the GNOWSYS kernel can also be viewed in the form of three
semantically significant levels: metatype, type and token levels. All the two type
level constructors help a knowledge engineer construct (specify) a model (the
structure of the cognitive system), The epistemic value of this modeling type

7



2. THE ARCHITECTURE

layer is consistency, since these are conceptual in nature. All the token level
constructors help store the data about a given situation. The epistemic value
of this token layer is truth. Though contradictory propositions can be stored in
the system at the ground layer, while building the structures additionally and
explicitly specified semantic constraints prevent contradiction. The connection
between the levels is made by the inference layer, which does the validity check-
ing, to deduce consequences that are not fed into the knowledge base explicitly,
to hypothesize either abductively or by other ampliative means. This will add
new inferred elements, both propositions and concepts, to the system. The in-
ference layer is optionally kept out of the system, for it should be possible to
conduct semantic discourse about an instantiated structure. The top metatype
level can serve the purpose of expressing and storing what is now popularly
known as upper ontologies and the relations among them[17, 18].

2.4 Flexible Knowledge Representation Model

As mentioned above, one of the guiding principle in making GNOWSYS is to
make the kernel support flexible modeling. As a result the primitive construc-
tors of the systems are sufficiently general and are less imposing. The number
of constructors are kept as low as possible, but at the same time the approach
is not minimalist in kind, since such an approach may make it very abstract,
difficult and inconvenient to use. Keeping in mind the motivations mentioned
in the beginning the system is suitable for building systems with high degree of
expressivity than closed, strictly constrained formal systems, though the latter
possibility is not ruled out. Thus from unstructured data (WFF) to semistruc-
tured (ISS) and structured data (CSS) can be constructed and stored. Also since
multiple ontologies can be stored in the knowledge base, the relations between
them can also be expressed using various semantic matching proposals (For ex-
ample[19]). This is very important for meeting the objective (b). A teacher or
an automatic evaluation engine could specify the semantic matching relations
between different conceptual schemes and send the reports to the students. Since
matching relation is a kind of analogy, more expressive analogical reasoning tech-
niques can be employed.

The model draws from various well known models of knowledge representa-
tion and tries to support expressibility of the common wisdom of the area. In this
regard, special mention be made on the models that are taken more seriously
for the core structure: standard first order logic for declarative knowledge, UML
for representing object oriented modeling[20], Petri Net Markup Language[21]
for procedural representation and processes, and standard upper ontology for
discourse of highly abstract meta level[17].

A special mention must be made in this regard on a resource that came in
handy for grasping the wisdom: John Sowa’s comprehensive work on Knowl-

edge Representation[18]. The attempt is to meet Sowa’s challenge of knowledge
soup (“the fluid, loosely organized, dynamically changing contents of the human
mind”), on the one hand and reach dialectically the procedurally represented

8



3. SEMANTIC COMPUTING VISION OF GNOWSYS

declarative knowledge, and declaratively represented procedural knowledge on
the other.

This flexible architecture of GNOWSYS also includes data exchange modules
that can support interchange of knowledge base into various standards used in
the industry and academia. Notable among them are: Common Logic (CL)[22],
Concept Graphs (CG)[23, 18], KIF (Knowledge Interchange Format)[24], Web
Ontology Language (OWL)[25, 26], Topic Maps (XTM)[27], and PNML (Petri
Net Markup Language)[21]. OWL and XTM support is already implemented
and support for others is under development. UML, CG and Petri Nets are very
convenient modes of graphical representation of knowledge, and so are of special
significance to the pyGTK[28] based GUI for GNOWSYS called ‘gnowser’.

The ability to store active classes and functions in the knowledge base can
be actually used for self-representation of GNOWSYS. This however remains a
possibility that we wish to explore and experiment in future.

A communication interphase with the knowledge base is an integral part of
the GNOWSYS kernel. A database without RPC interphase makes not much
sense particularly at this time when Internet is driving every application design.
GNOWSYS contains an RPC called Gnowledge Query Library (GQL), imple-
mented currently using XML-RPC. Other clients and servers, independent of
their implementation mode, can communicate with GNOWSYS remotely. These
calls can be embedded in any language that support XML-RPC library as an
integral part of their logic, and hence very convenient to develop applications
using GQL. This brings us to one of the most vital implementation strategies of
this application.

3 Semantic Computing Vision of GNOWSYS

Not withstanding the original motivations as explicated in the first section, along
the way, while the prototype of GNOWSYS is being built some other possible
strategies of implementing semantic computing in general, and semantic web
in particular, came to light. These are like the unintended consequences of the
original project. I wish to share these possibilities in this section. Since these
possibilities came to light while solving the problem of how should GNOWSYS
be implemented, I will first start there.

3.1 Implementation

Main implementation strategy of GNOWSYS is to develop it as a hybrid database
(with RDBMS, OODBMS, and distributed DB features) without encoding in
XML, but with an ability to map to any XML encoding schemes available with
ease. This point is specially mentioned here because the hype created among
the community on XML actually made XML based knowledge representation
tools very very slow. Loading an XML file representing, say of the popular En-
glish thesaurus Wordnet[29], in any such application and perform faster manage,

9



3. SEMANTIC COMPUTING VISION OF GNOWSYS

Zope
Core

HTTP
XML-RPC

object
store
(ZODB)

optional
file system
store

Catalogue

GNOWSYS
Classes

BTreeFolder2

Zserver

Fig. 2. A diagram illustrating the implementation model of GNOWSYS database.
ZOPE’s Zserver, ZODB, Catalogue, and another third-party product BTreeFolder2
provide a feature rich environment for GNOWSYS. Diagram is made based on Zope
Architecture[31]

search, and retrieval operations, we will realize that XML encoding at an appli-
cation layer is not a sane idea for larger knowledge bases. Keeping this in mind
the physical storage of knowledge base in GNOWSYS is implemented on a web
application server ZOPE (Zee Object Publishing Environment)[30], which took
care of several requirements of a database, helping us to focus on implementing
a faster prototype, including making it inter-operable. ZOPE provides state-of-
the-art features for publishing (serving) objects on the Internet, customizing and
extending existing objects, multi-user authentication, transaction management,
version control, history, and most important for our purpose, a catalogue for
indexing both data and metadata stored in the knowledge base. ZOPE also pro-
vides more than one architecture of creating views of the database using DTML
(Dynamic Template Markup Language) and ZPT (Page Templates) templat-
ing architectures. Its in-built support for XML-RPC came in handy for easy
implementation of an RCP port of GNOWSYS, GQL.

10



3. SEMANTIC COMPUTING VISION OF GNOWSYS

GNOWSYS is developed by using extendibility model of ZOPE. All the
GNOWSYS component classes and interfacing functions are all implemented
in a versatile, full-featured object-oriented programming language Python [3], in
which ZOPE is also developed. The knowledge base is stored physically within
ZODB, a special object storing tank, the contents of which can be accessed
through ZServer which supports a wide variety of RPC protocols via HTTP.

3.2 Possibility of Semantic Web Without Unicode Markup

A notable feature of GNOWSYS is the provision of a unique URL for each ob-
ject in the knowledge base. This feature is essential for using GNOWSYS as a
distributed publishing tool for large structured knowledge bases like thesauri,
concept bases, encyclopedia, and any such information systems including mak-
ing regular dynamic web sites. But, most enabling aspect of this feature is for
developing semantic web. GNOWSYS provides a unique opportunity for devel-
oping semantic web without regular use of markup. This is because GNOWSYS
is a server listening to structured queries directly over the Internet. In the cur-
rent practice the database schemes were hidden due to the intervening markup
layer. While XML solves this problem by declaring the structure, it does it in
an expensive way. Let us see how.

A client to server communication is an agent to agent communication. No
human being is required to make the client understand the markup. Therefore,
what we need is a binary markup between artificial agents, and a translation
between binary markup and UI for us to see the structure and semantics. Cur-
rently the documents in WWW are structured using a markup mostly in ASCII
or Unicode. It made good sense because the communication was mainly intended
to be between a machine and human being. In future when the web extends to
semantic web, a lot of communication is expected to take place between ma-
chines. Why should machines need such expressive (read expensive) markup, if
human beings are not reading the structure?

GNOWSYS model, when frozen, like all databases will have a finite number
of knowledge organizers for structuring all structurable data. Unstructured data
will of course pass as Unicode. Such structured data can go without markup in
Unicode, but a more economical code, reducing the required data transfer and
also the need to parse. Unicode markup is possibly required for programmers to
give structure, and for data exchange between heterogeneous systems. The very
idea of Unicode based markup like XML was invented to meet this requirement.
But, since we are slowly moving towards standards for knowledge exchange, we
should move towards databases structured with a standard structure. Databases
can be heterogeneous in their implementation strategies, but could neverthe-
less agree on standard knowledge exchange schemes, just as computing industry
adopted Unicode for human interphase. If, e.g., OWL becomes a standard, then
databases should be made for storing OWL schema, rather than working with
fat XML files. GNOWSYS or such systems can help us move in this direction.

When this happens a browser can directly render the structured knowledge
directly from the knowledge base into either textual form, controlled natural

11



3. SEMANTIC COMPUTING VISION OF GNOWSYS

language, tabular form, concept graphs or any such human interphase which
preserves the structure and semantics. An advantage of rendering structure on
the client side is the user can choose the preferred mode of drawing depending on
the toolkit the client uses. Additional advantage is eliminating (1) the creation
or storing of structure as Unicode based markup on the server side and (2)
interpreting such markup on the client side.

Further, GNOWSYS uses a GQL, Gnowledge Query Library, not a language.
Since this is a library, the query and management functions can be directly
embedded in any programming language, eliminating the need to perform addi-
tional parsing on the server side. Agent oriented computing becomes easier since
the agents talk directly to the knowledge base using GQL.

Computers had demonstrated their potential that they can ‘read’ and ‘reply’
more efficiently as databases, and programmers had demonstrated that they can
manage databases easily. Massive deployment of databases everywhere and by
anybody, is a good indication that this approach works. By transforming web
servers into knowledge bases with RPC support we can publish large scalable
semantic web sites, and not by serving through web servers publishing fat XML
files containing knowledge bases.

3.3 Computing Without Syntax!

It was realized very early that GNOWSYS model can be used for visual comput-
ing without explicit syntax. A prototype was developed with the following design:
Using a script, a Python library was scanned and the metadata of classes and
functions (such as module name, function name, documentation string, number
of variables required) were obtained and surrogate ‘Function’ objects were in-
stalled in the knowledge base. These objects act as an interphase for the user on
one hand and the Python interpreter on the other hand. When these instances
were invoked, Python interpreter was called and the function executed. We then
combined such functions with logical connectives (including conditions, loops,
and logic operations) using another class called ‘Flow Type’, which defined the
flow of the program. These instances could be recursively reused in bigger pro-
grams taking advantage of the persistent storage of the objects. A demonstration
of our first prototype implementation can be seen from [32].

Currently we are extending GQL to support query and management of pro-
cedural objects, so that gnowser can help in developing a visual computing envi-
ronment more efficiently than doing it in HTML. Another development is to ad-
vance this support for all free software libraries, other than Python programming
language, such as C, C++, LISP, Prolog, Perl, etc, so that a true visual comput-
ing suit could be built. This possibility adds a newer dimension to GNOWSYS,
which is: (1) to blend functions from different languages in a single program, (2)
since the functions have a unique URL a program can refer to functions spread
anywhere on the Internet (possibility for semantic grid computing). This will be
the basis for web services model of GNOWSYS. Interfaces for doing (1) and (2)
are currently being developed.

12



4. FUNCTIONALITY OF GNOWSYS

Needless to say, such a development will have very high relevance for educa-
tion, including teaching programming. The current emphasis on the syntactical
marks of a program can be diverted to the semantics and logic of the program,
leaving the former to a few expert computer programmers. Since more people
know logic than programming, all those who can think systematically could be-
gin to program using gnowser.

Let us be reminded that there is no language without syntax, so obviously
computing without syntax is just incorrect. What is meant is to make syntax
implicit by following visual rules, so that programmers can focus on logic. This
qualification applies to earlier sections too. Markup exists for any language, but
remains implicit knowledge to the agents (whether human or artificial). Once
we have made the computers to understand the implicit rules, there remains
no reason to input that feed every time. Fortunately (unfortunately sometimes)
computers never forget.

4 Functionality of GNOWSYS

Based on the discussion above, one may see that it is very difficult to give
an exhaustive list of applications using GNOWSYS. Only a few applications
envisaged with GNOWSYS are presented here. Since the system can be used as
knowledge base on personal computers, it can be deployed for desktop as well
as server oriented applications.

– As a web based hybrid database (as a file system, RDBMS, OODBMS,
distributed DBMS) with querying and remote management. This feature
will make it highly suitable for agent oriented computing solutions across
the Internet.

– For building structured knowledge bases with a higher degree of expres-
siveness. This will help build AI based applications using GNOWSYS as
a database. Digital encyclopedia, thesauri, dictionaries or glossaries can be
made very easily. Even multi-lingual databases for machine based transla-
tion can be linked from one GNOWSYS instance to another since distributed
relations between objects across the network is possible.[33]

– Lessons and concepts (learning resources) can be organized according to the
standard metadata suggested by LOM/SCORM models. Learning paths,
evaluation tracks, usage history etc., can be persistently stored and accessed
by establishing networking relations and conditions among them. Concept
graphs, and semantic networks can be built easily since the highest possible
granularity of learnable resources in GNOWSYS are concepts. Automated
objective evaluation can be achieved by matching expert’s with learner’s
knowledge map. Dynamics of learning (cognitive development) can be mod-
eled.

– Using semantic computing feature of GNOWSYS, online tutorials can be
built for teaching procedural skills such as mathematics, programming lan-
guages.

13



5. STATUS OF THE PROJECT

– Most semantic web solutions require the use of XML based representations
like OWL, XTM etc. GNOWSYS is unique in its ability to provide semantic
web without the use of XML, though using the data-exchange sub-system of
GNOWSYS it is possible to export/import the content in XML or for that
matter any other markup.

– Since GNOWSYS database is available as a web-server, dynamic web sites
and web services can be made by employing the powerful ZPT, Python Script
objects, and DTML templates available in ZOPE. Zope users need not use
an external database, instead they can use GNOWSYS. Web sites built with
GNOWSYS are “semantic web ready”, for the structure of the data can be
queried by software agents. Normal dynamic web sites conceal the database
scheme, while GNOWSYS sites do not.

– As object sharing system can be built for huge desktop solutions that use
CORBA like implementations, like GNOME/KDE etc. This will save pro-
cessing time since data files are stored persistently in the database and not as
XML files as is the case currently in thees desktops. This will make reusabil-
ity of data across applications very efficient.

– As a personal knowledge manager (PIM) application for storing, and or-
ganizing emails, hyperlinks, notes, documents, books, blogs, files etc., with
optional attributes to publish, can build a custom home page efficiently.
GNOWSYS can send email through SMTP servers and receive through
POP3 protocol.

– A file system with user level attributes on files is available on modern file
systems like XFS. For storing very large knowledge bases GNOWSYS is being
ported to XFS file system. This indicates the possibility of using GNOWSYS
for a semantic desktop OS with cacheable metadata and data.

5 Status of the Project

GNOWSYS prototype building began in 2001 with the first release (0.2) in
2002. The current release version is 0.6 at the time of writing this document.
The current development version is 0.7 slowly progressing for the first stable
version 0.8. The code is contributed by several programmers[34].

Several modules are actively developed and it is deployed to build a com-
munity portal gnowledge.org[35], which will serve a large multi-lingual corpus of
concepts of science and folk-lore in various languages with a facility to weave true
propositions. It is an official GNU project, and so I hope like many other GNU
projects it will continue to exist and maintained with support from developers
across the globe[36].

GNOWSYS is deployed as a dynamic web server of Homi Bhabha Centre for
Science Education[37]. Recently an English thesaurus was built using the en-
tire database of Wordnet (an English thesaurus developed by Princeton Univer-
sity), containing around 100,000 objects and 300,000 semantic relations among
them[33]. This instance is a good demonstration of the potential of GNOWSYS
as a knowledge base. A prototype of active procedural objects showcasing web
service model of GNOWSYS was also developed[32].

14



5. STATUS OF THE PROJECT

The objective of GNOWSYS as a knowledge base is very near completion, but
as modeling tool for process modeling and cognitive development still remains a
concept on paper. This cannot be done without introducing the time dimension
in the system. A proper scheme for authoring temporal knowledge, and to build
systems that are process driven is being worked out based on pi-calculus and
Petri Nets[38, 21]. It is interesting to note that a flexible modeling scheme based
on communication between artificial and human agents necessitates the need for
process driven architectures on one hand and analogy driven architectures on
the other[39]. In this context John Sowa’s remarks on dealing with “knowledge
soup” are relevant and provide both perspective and guidelines to the current
challenges[40].

References

1. Simon, H.: Sciences of the Artificial. 2 edn. The MIT Press, Cambridge (1982)
2. Minsky, M.: A framework for representing knowledge. In Winston, P., ed.: The

Psychology of Computer Vision. McGraw-Hill (1974)
3. Novak, J., Gowin, D.B.: Learning How to Learn. Cambridge University Press, UK

(1984)
4. Mintzes, J., Wandersee, J., Novak, J., eds.: Assessing Science Understanding – A

Human Constructivist View. Academic Press, USA (2000)
5. Fisher, K., Kibby, M., eds.: Knowledge Acquisition, Organization, and Use in

Biology. Springer-Verlag, Germany (1996)
6. Fisher, K., Wandersee, J., Moody, D.: Mapping Biology Knowledge. Kluwer Aca-

demic Publishers, The Netherlands (2000)
7. Ausubel, D., Novak, J., Hanesian, H.: Cognitive Physchology: A Cognitive View.

Holt, Rinehart and Winston, New York (1978)
8. Mintzes, J., Wandersee, J., Novak, J., eds.: Teaching Science for Understanding

— A Human Consctructivist View. Academic Press, USA (1998)
9. Nagarjuna G.: Layers in the fabric of mind: A critical review of cognitive ontogeny.

In Ramadas, J., Chunawala, S., eds.: epiSTEME 1: An International Conference
to Review Research on Science, Technology and Mathematics Education, Homi
Bhabha Centre for Science Education (2005) Forthcoming.

10. Kuhn, T.S.: The Structure of Scientific Revolutions. Second edn. University of
Chicago Press, Chicago (1970)

11. Carey, S.: Conceptual change and science education. American Psychologist 41

(1986) 1123–1130
12. Thagard, P.: Computational Philosophy of Science. The MIT Press (1993)
13. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American

284 (2001) 34–43
14. Fensel, D., Hendler, J., Lieberman, H., Wahlster, W., eds.: Spinning the Semantic

Web. The MIT Press, Cambridge, Massachusetts (2003)
15. Anderson, J.R.: The Architecture of Cognition. Harvard University Press, Cam-

bridge, MA (1983)
16. Siegel, N., Goolsbey, K., Kahlert, R., Matthews, G.: The Cyc System: Notes on

Architecture. Cycorp. Inc., Austin, Texas. (2004)
17. Working Group: Standard upper ontology. http://suo.ieee.org/ (2003) IEEE

P1600.1.

15



5. STATUS OF THE PROJECT

18. Sowa, J.: Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Cole, USA (2003)

19. Giunchiglia, F., Shvaiko, P.: Semantic marching. In Giunchiglia, F., Gomez-Perez,
A., Pease, A., Stuckenschmidt, H., Sure, Y., Willmott, S., eds.: Proceedings of the
IJCAI-03 Workshop on Ontologies and Distributed Systems. Volume 71. (2003)

20. Object Management Group: Unified modeling language. (http://www.uml.org/)
21. Weber, M., Kindler, E.: The petri net markup language. Technical report, Petri

Net Technology for Communication Based Systems (2002)
22. CL Working Group: Abstract syntax and semantics: Common logic working group

(2003)
23. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley Publishing Company, USA (1984)
24. KIF: Knowledge interchange format. (http://logic.stanford.edu/kif/dpans.html)

Draft proposed American National Standard, NCITS.T2/98-004.
25. Berners-Lee, T.: Foreword. In Fensel, D., Hendler, J., Lieberman, H., Wahlster,

W., eds.: Spinning the Semantic Web. The MIT Press, Cambridge, Massachusetts
(2003)

26. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. The MIT Press, Cam-
bridge, Massachusetts (2004)

27. XTM: XML topic maps. (http://www.topicmaps.org/)
28. pyGTK: Gtk+ for python. (http://www.pygtk.org/)
29. Wordnet: A lexical database for the english langauge.

http://www.cogsci.princeton.edu/ wn (2004)
30. ZOPE: Zee object publishing environment. (http://www.zope.org/)
31. ZOPE: Zope architecture diagram. http://zope.org/WhatIsZope/ZopeArchitecture

(2003)
32. GNOWSYS Team: Active procedural objects. http://zope.hbcse.tifr.res.in/pr/

(2003)
33. Thesaurus: An English thesaurus implemented in GNOWSYS.

http://www.gnowledge.org/wordnetbth/ (2004)
34. GNOWSYS Team: Code contributors to GNOWSYS.

(http://www.gnowledge.org/)
35. Gnowledge.org: A portal for weaving gnowledge. (http://www.gnowledge.org/)
36. GNOWSYS: Home page of gnowsys. (http://www.gnu.org/software/gnowsys/)
37. HBCSE: Home page of Homi Bhabha Centre for Science Education.

http://www.hbcse.tifr.res.in/ (2003)
38. Weber, M., Kindler, E.: Petri net kernel: An infrastructure for building petri net

tools. Software Tools for Technology Transfer (STTT) 3 (2001) 486–497
39. Sowa, J.F., Majumdar, A.K.: Anological reasoning. In Aldo de Moor, Willfried Lex,

B.G., ed.: Conceptual Structures for Knowledge Creation and Communication,
Proceedings of ICCS 2003. Volume LNAI 2746., Berlin, Springer-Verlag (2003)
16–36

40. Sowa, J.: The challenge of knowledge soup. In Ramadas, J., Chu-
nawala, S., eds.: epiSTEME-1: An International Conference to Review Re-
search on Science, Technology and Mathematics Education, Goa, India, Homi
Bhabha Centre for Science Education (2004) Slides of the talk available at
http://www.jfsowa.com/talks/challenge.pdf.

16


